เส้นขนานมีสมบัติที่สำคัญ 2 ประการ
1. ถ้าเส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่งทำให้มุมแย้งมีขนาดเท่ากัน แล้วเส้นตรงคู่นี้จะขนานกัน
เส้นขนานมีสมบัติที่สำคัญ 2 ประการ
1. ถ้าเส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่งทำให้มุมแย้งมีขนาดเท่ากัน แล้วเส้นตรงคู่นี้จะขนานกัน
เฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัด 2.3 ก
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551)
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ
ISBN 978-616-362-779-7
เฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัด 2.2 ค
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551) สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการเฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัด 2.2 ข
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551) สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ ISBN 978-616-362-779-7เฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัด 2.2 ก
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551) สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ ISBN 978-616-362-779-7การสร้างรูปเรขาคณิตต้องอาศัยความรู้ในการสร้างพื้นฐานทางเรขาคณิต (basic geometric construction) 6 ข้อ ดังนี้
1. การสร้างส่วนของเส้นตรงให้ยาวเท่ากับความยาวของส่วนของเส้นตรงที่กำหนดให้
2. การแบ่งครึ่งส่วนของเส้นตรงที่กำหนดให้
3. การสร้างมุมให้มีขนาดเท่ากับขนาดของมุมที่กำหนดให้
4. การแบ่งครึ่งมุมที่กำหนดให้
5. การสร้างเส้นตั้งฉากจากจุดภายนอกมายังเส้นตรงที่กำหนดให้
6. การสร้างเส้นตั้งฉากที่จุดจุดหนึ่งที่อยู่บนเส้นตรงที่กำหนดให้
อ้างอิง : สถาบันส่งเสริมการสอนวิทยศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ. 2562. หนังสือเรียนรายวิชาพื้นฐานคณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1. 7. กรุงเทพมหานคร
เฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัด 2.1
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551) สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ ISBN 978-616-362-779-7จำนวนเต็ม (integer) มี 3 ชนิด
1. จำนวนเต็มบวก (positive integer) ได้แก่ 1, 2, 3, ...
(จำนวนเต็มบวกมีชื่อเรียกอีกว่าจำนวนนับ (counting number) หรือจำนวนธรรมชาติ (natural number)
2. จำนวนเต็มศูนย์ (zero) ได้แก่ 0
3. จำนวนเต็มลบ (negative integer) ได้แก่ -1, -2, -3, ...
การเขียนจำนวนเต็ม
การเขียนจำนวนเต็มลบจะเขียนเครื่องหมาย - ไว้หน้าตัวเลข เช่น -1, -2, -10
แต่การเขียนจำนวนเต็มบวกไม่นิยมเขียนเครื่องหมาย + ไว้หน้าตัวเลข จะเขียนเฉพาะตัวเลขเลย เช่น 1, 2, 10
การเขียนจำนวนเต็มศูนย์จะเขียนเฉพาะตัวเลข 0
การเขียนเส้นจำนวน
การเขียนเส้นจำนวนจะเขียนหัวลูกศรทั้งสองข้างเพื่อแสดงว่ายังมีจำนวนอื่นๆ ที่มากกว่าหรือน้อยกว่าจำนวนที่เขียนแสดงไว้
บนเส้นจำนวน จำนวนที่อยู่ทางขวามือจะมากกว่าจำนวนที่อยู่ทางซ้ายมือเสมอ
1. ค่าสัมบูรณ์ (absolute value) ของจำนวนเต็มจำนวนหนึ่ง คือ ระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน
2. การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ให้นำค่าสัมบูรณ์ของจำนวนเต็มบวกทั้งสองจำนวนมาบวกกัน แล้วตอบเป็นจำนวนเต็มบวก
3. การบวกจำนวนเต็มลบด้วยจำนวนเต็มลบ ให้นำค่าสัมบูรณ์ของจำนวนเต็มลบทั้งสองจำนวนมาบวกกัน แล้วตอบเป็นจำนวนเต็มลบ
4. การบวกจำนวนเต็มบวกกับจำนวนเต็มลบที่มีค่าสัมบูรณ์ไม่เท่ากัน ให้นำค่าสัมบูรณ์ที่มากกว่าเป็นตัวตั้งแล้วลบด้วยค่าสัมบูรณ์ที่น้อยกว่า แล้วตอบเป็นจำนวนเต็มชนิดเดียวกับจำนวนเต็มที่มีค่าสัมบูรณ์มากกว่า
5. การบวกจำนวนเต็มบวกกับจำนวนเต็มลบที่มีค่าสัมบูรณ์เท่ากัน ให้นำค่าสัมบูรณ์ของจำนวนทั้งสองนั้นมาลบกัน ซึ่งจะได้ผลบวกเป็นศูนย์
6. การบวกจำนวนเต็มสองจำนวน เมื่อสลับที่ระหว่างตัวตั้งและตัวบวก ผลบวกที่ได้ยังคงเท่าเดิม
ดังนั้น การบวกจำนวนเต็มมีสมบัติการสลับที่
7. การบวกจำนวนเต็มสามจำนวน แม้จะเปลี่ยนคู่ในการบวก แต่ผลบวกที่ได้ยังคงเท่าเดิม
ดังนั้น การบวกจำนวนเต็มมีสมบัติการเปลี่ยนหมู่
จำนวนตรงข้าม (opposite number) ของจำนวนเต็มจำนวนหนึ่งคือจำนวนเต็มอีกจำนวนหนึ่ง โดยที่จำนวนเต็มทั้งสองนี้อยู่ห่างจากศูนย์บนเส้นจำนวนเป็นระยะเท่ากัน
ตัวอย่าง เช่น
1 คือจำนวนตรงข้ามกันกับ -1
8 คือจำนวนตรงข้ามกันกับ -8
-27 คือจำนวนตรงข้ามกันกับ 27
0 เป็นจำนวนตรงข้ามของ 0
จำนวนตรงข้ามของจำนวนเต็มมีเพียงจำนวนเดียวเท่านั้น
1. การลบกันระหว่างจำนวนเต็มสองจำนวน เมื่อสลับที่ระหว่างตัวตั้งและตัวลบ ผลลับที่ได้ไม่เท่ากัน
ดังนั้น การลบกันของจำนวนเต็มไม่มีสมบัติการสลับที่
2. การลบกันระหว่างจำนวนเต็มสามจำนวน เมื่อเปลี่ยนคู่ในการลบ ผลลบที่ได้จะไม่เท่ากัน
ดังนั้น การลบกันของจำนวนเต็มไม่มีสมบัติการเปลี่ยนหมู่
1. การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก จะได้ผลคูณเป็นจำนวนเต็มบวกที่มีค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น
1. ถ้าตัวตั้งและตัวหารเป็นจำนวนเต็มบวกทั้งคู่ ใช้วิธีเดียวกับการหารจำนวนนับด้วยจำนวนนับ ซึ่งได้ผลหารเป็นจำนวนเต็มบวก
เฉลยแบบฝึกหัด ตัวอย่างการทำแบบฝึกหัดท้ายบทที่ 1
หนังสือเรียนรายวิชาพื้นฐาน คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 เล่ม 1 ฉบับปรับปรุง พ.ศ. 2560 (ตามหลักสูตรแกนกลาง พ.ศ. 2551) สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ ISBN 978-616-362-779-7